Marine biomaterials in biomedical nano/micro-systems | Journal of Nanobiotechnology

[ad_1]

  • Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: future building blocks for biomedical applications. Bioact Mater. 2021;6(12):4255–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigrelli RF, Stempien MF Jr, Ruggieri GD, Liguori VR, Cecil JT. Substances of potential biomedical importance from marine organisms. Fed Proc. 1967;26(4):1197–205.

    CAS 
    PubMed 

    Google Scholar
     

  • Imhoff JF, Labes A, Wiese J. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv. 2011;29(5):468–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu Z, Timashev P, Chen J, Liang XJ. Ferritin-based drug delivery system for tumor therapy. BMEMat. 2023;1(2): e12022.

    Article 

    Google Scholar
     

  • Xiang X, Feng X, Lu S, Jiang B, Hao D, Pei Q, Xie Z, Jing X. Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration. 2022;2(4):20220008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine bioactive compounds and their health benefits: a review. Crit Rev Food Sci Nutr. 2015;14(4):446–65.

    CAS 

    Google Scholar
     

  • Panahi HKS, Dehhaghi M, Amiri H, Guillemin GJ, Gupta VK, Rajaei A, Yang YD, Peng WX, Pan JT, Aghbashlo M, Tabatabaei M. Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnol Adv. 2023;9(66): 108172.

    Article 

    Google Scholar
     

  • Chen X, Zhao X, Wang G. Review on marine carbohydrate-based gold nanoparticles represented by alginate and chitosan for biomedical application. Carbohydr Polym. 2020;244: 116311.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol. 2016;82:315–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr. 2022. https://doi.org/10.1080/10408398.2022.2105800.

    Article 
    PubMed 

    Google Scholar
     

  • Yang M, Zhou D, Xiao H, Fu X, Kong Q, Zhu C, Han Z, Mou H. Marine-derived uronic acid-containing polysaccharides: structures, sources, production, and nutritional functions. Trends Food Sci Technol. 2022;122:1–12.

    Article 
    CAS 

    Google Scholar
     

  • Lee YE, Kim H, Seo C, Park T, Lee KB, Yoo SY, Hong SC, Kim JT, Lee J. Marine polysaccharides: therapeutic efficacy and biomedical applications. Arch Pharm Res. 2017;40(9):1006–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng Y, Xue H, Zhang Z, Panayi AC, Knoedler S, Zhou W, Mi B, Liu G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym. 2023;305: 120555.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeedi M, Vahidi O, Moghbeli MR, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb MR, Webster TJ, Varma RS, Sharifi E, Zarrabi A, Rabiee N. Customizing nano-chitosan for sustainable drug delivery. J Control Release. 2022;350:175–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao S, Zhao Y, Xu Y, Jin B, Wang M, Yu C, Guo Z, Jiang S, Tang R, Fang X, Fan S. Injectable dual-dynamic-bond cross-linked hydrogel for highly efficient infected diabetic wound healing. Adv Health Mater. 2022;11(14):2200516.

    Article 
    CAS 

    Google Scholar
     

  • Yang C, Zhang Z, Liu L, Li Y, Dong X, Chen W. Fabrication of soy protein isolate/κ-carrageenan hydrogels for release control of hydrophilic compounds: Flax lignans. Int J Biol Macromol. 2022;223:821–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Ji C, Dai H, Wang C, Liu R, Xie J, Wang Y, Gu Z. Mussel-inspired tantalum nanocomposite hydrogels for in situ oral cancer treatment. ACS Appl Mater Inter. 2023;15(4):4984–95.

    Article 
    CAS 

    Google Scholar
     

  • Su T, Zhang M, Zeng Q, Pan W, Huang Y, Qian Y, Dong W, Qi X, Shen J. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering. Bioact Mater. 2021;6(3):579–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Lu S, Tian H, Li L, Li B, Yang M, Zhou L, Jiang H, Li Q, Wang W, Nice EC, Xie N, Huang C, Liu L. Nanoengineering a zeolitic imidazolate framework-8 capable of manipulating energy metabolism against cancer chemo-phototherapy resistance. Small. 2022;18(48):2204926.

    Article 
    CAS 

    Google Scholar
     

  • Venkatesan J, Murugan SS, Seong GH. Fucoidan-based nanoparticles: preparations and applications. Int J Biol Macromol. 2022;217:652–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Don T-M, Chang W-J, Jheng P-R, Huang Y-C, Chuang E-Y. Curcumin-laden dual-targeting fucoidan/chitosan nanocarriers for inhibiting brain inflammation via intranasal delivery. Int J Biol Macromol. 2021;181:835–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9):1148–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rütsche D, Nanni M, Rüdisser S, Biedermann T, Zenobi-Wong M. Enzymatically crosslinked collagen as versatile matrix for in vitro and in vivo Co-engineering of blood and lymphatic vasculature. Adv Mater. 2023;35:2209476.

    Article 

    Google Scholar
     

  • Cheng H, Cui Z, Guo S, Zhang X, Huo Y, Mao S. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomater. 2021;135:506–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parolini C. Marine n-3 polyunsaturated fatty acids: efficacy on inflammatory-based disorders. Life Sci. 2020;263: 118591.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venugopalan VK, Gopakumar LR, Kumaran AK, Chatterjee NS, Soman V, Peeralil S, Mathew S, McClements DJ, Nagarajarao RC. Encapsulation and protection of omega-3-rich fish oils using food-grade delivery systems. Foods. 2021;10(7):1566.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balu SK, Andra S, Jeevanandam J. Emerging marine derived nanohydroxyapatite and their composites for implant and biomedical applications. J Mech Behav Biomed Mater. 2021;119:104523.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khodadadi Yazdi M, Taghizadeh A, Taghizadeh M, Stadler FJ, Farokhi M, Mottaghitalab F, Zarrintaj P, Ramsey JD, Seidi F, Saeb MR, Mozafari M. Agarose-based biomaterials for advanced drug delivery. J Control Release. 2020;326:523–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang Y, Wu S, Lin J, Cheng L, Zhou J, Xie J, Huang K, Wang X, Yu Y, Chen Z, Liao G, Li C. Nanoparticles targeted against Cryptococcal Pneumonia by interactions between chitosan and its peptide ligand. Nano Lett. 2018;18(10):6207–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida A, Castro F, Resende C, Lúcio M, Schwartz S, Sarmento B. Oral delivery of camptothecin-loaded multifunctional chitosan-based micelles is effective in reduce colorectal cancer. J Control Release. 2022;349:731–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, Yan F, Wang Z, Huang P, Feng N. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotech. 2018;16(1):1–12.

    Article 

    Google Scholar
     

  • Qi S, Luo R, Han X, Nie W, Ye N, Fu C, Gao F. pH/ROS dual-sensitive natural polysaccharide nanoparticles enhance “one stone four birds” effect of rhein on ulcerative colitis. ACS Appl Mater Inter. 2022;14(45):50692–709.

    Article 
    CAS 

    Google Scholar
     

  • Wang J, Chin D, Poon C, Mancino V, Pham J, Li H, Ho P-Y, Hallows KR, Chung EJ. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release. 2021;329:1198–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar A, Singam A, Swaminathan G, Killi N, Tangudu NK, Jose J, Gundloori Vn R, Dinesh Kumar L. Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models. Nanoscale. 2022;14(2):492–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, Leong KW, Chen Y, Mao H-Q. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials. 2017;130:28–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu R, Qiu S, Zhang J, Liu X, Zhang L, Xing H, You M, Wang M, Lu Y, Zhang P, Zhu J. Silibinin schiff base derivatives counteract CCl4-induced acute liver injury by enhancing anti-inflammatory and antiapoptotic bioactivities, drug des. dev. Therapy. 2022;16:1441–56.


    Google Scholar
     

  • Duan B, Li M, Sun Y, Zou S, Xu X. Orally delivered antisense oligodeoxyribonucleotides of TNF-α via polysaccharide-based nanocomposites targeting intestinal inflammation. Adv Health Mater. 2019;8(5):1801389.

    Article 

    Google Scholar
     

  • Xiao B, Chen Q, Zhang Z, Wang L, Kang Y, Denning T, Merlin D. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J Control Release. 2018;287:235–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Luo R, Dong L, Pu X, Chen Q, Ye N, Qi S, Han X, Nie W, Fu C, Hu Y, Zhang J, Gao F. pH/ROS dual-sensitive and chondroitin sulfate wrapped poly (β-amino ester)-SA-PAPE copolymer nanoparticles for macrophage-targeted oral therapy for ulcerative colitis. Nanomedicine. 2022;39: 102461.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang K, Wang X, Huang R, Wang H, Lan P, Zhao Y. Prebiotics and postbiotics synergistic delivery microcapsules from microfluidics for treating colitis. Adv Sci. 2022;9(16):2104089.

    Article 
    CAS 

    Google Scholar
     

  • Zhang F, Du Y, Zheng J, Cai Z, Ding T, Zhuang P, Yang D, Liao F, Zhang Y, Yang W, Xiao Y, He W, Cui W, Guo W. Oral administration of multistage albumin nanomedicine depots (MANDs) for targeted efficient alleviation of chronic inflammatory diseases. Adv Funct Mater. 2023;33(9):2211644.

    Article 
    CAS 

    Google Scholar
     

  • Xie W, Zhao K, Xu L, Gao N, Zhao H, Gong Z, Yu L, Jiang J. Oxalic acid cross-linked sodium alginate and carboxymethyl chitosan hydrogel membrane for separation of dye/NaCl at high NaCl concentration. Chin Chem Lett. 2022;33(4):1951–5.

    Article 
    CAS 

    Google Scholar
     

  • Zhou J, Li M, Chen Q, Li X, Chen L, Dong Z, Zhu W, Yang Y, Liu Z, Chen Q. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery. Nat Commun. 2022;13(1):3432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Q, Chen Z, Paul PK, Lu Y, Wu W, Qi J. Oral delivery of proteins and peptides: challenges, status quo and future perspectives. Acta Pharmaceutica Sinica B. 2021;11(8):2416–48.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Z, Hou Y. Intelligent micro/nanorobots for improved tumor therapy. BMEMat. 2023;1(2): e12012.

    Article 

    Google Scholar
     

  • Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Fluorescein isothiocyanate chitosan nanoparticles in oral drug delivery studies. Trends Pharmacol Sci. 2020;41(10):686–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Zhu X, Zhou X, Wang X, Zhai W, Li B, Du J, Li G, Sui X, Wu Y, Zhai M, Qi Y, Chen G, Gao Y. An orally available PD-1/PD-L1 blocking peptide OPBP-1-loaded trimethyl chitosan hydrogel for cancer immunotherapy. J Control Release. 2021;334:376–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang J, Bai Y, Shen S, Tao X, Ma C, Fu B, Dai Q, Wu J, Meng Z, Sun Q, Li X, Ren H. An oral nano-antioxidant for targeted treatment of inflammatory bowel disease by regulating macrophage polarization and inhibiting ferroptosis of intestinal cells. Chem Eng J. 2023;465:142940.

    Article 
    CAS 

    Google Scholar
     

  • Sheng J, He H, Han L, Qin J, Chen S, Ru G, Li R, Yang P, Wang J, Yang VC. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamei N, Kawano S, Abe R, Hirano S, Ogino H, Tamiwa H, Takeda-Morishita M. Effects of intestinal luminal contents and the importance of microfold cells on the ability of cell-penetrating peptides to enhance epithelial permeation of insulin. Eur J Pharm Biopharm. 2020;155:77–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling K, Wu H, Neish AS, Champion JA. Alginate/chitosan microparticles for gastric passage and intestinal release of therapeutic protein nanoparticles. J Control Release. 2019;295:174–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu X, Wen T, Cao P, Shan L, Li L. Alginate-chitosan coated layered double hydroxide nanocomposites for enhanced oral vaccine delivery. J Colloid Interface Sci. 2019;556:258–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Duan L, Sun J, Gou S, Chen F, Liang Y, Dai F, Xiao B. Oral nanotherapeutics based on Antheraea pernyi silk fibroin for synergistic treatment of ulcerative colitis. Biomaterials. 2022;282: 121410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian H, He Z, Sun C, Yang C, Zhao P, Liu L, Leong KW, Mao HQ, Liu Z, Chen Y. Uniform core-shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv Health Mater. 2018;7(17):1800285.

    Article 

    Google Scholar
     

  • Liu P, Li H, Gong J, Geng Y, Jiang M, Xu H, Xu Z, Shi J. Chitooligosaccharides alleviate hepatic fibrosis by regulating the polarization of M1 and M2 macrophages. Food Funct. 2022;13(2):753–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang T, Xu L, Zhao M, Kong F, Lu X, Tang C, Yin C. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials. 2022;280: 121324.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang SH, Revuri V, Lee SJ, Cho S, Park IK, Cho KJ, Bae WK, Lee YK. Oral siRNA delivery to treat colorectal liver metastases. ACS Nano. 2017;11(10):10417–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao M, Wang R, Yang K, Jiang Y, Peng Y, Li Y, Zhang Z, Ding J, Shi S. Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharmaceutica Sinica B. 2023;13(3):916–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steinle H, Ionescu TM, Schenk S, Golombek S, Kunnakattu SJ, Özbek MT, Schlensak C, Wendel HP, Avci-Adali M. Incorporation of synthetic mRNA in injectable chitosan-alginate hybrid hydrogels for local and sustained expression of exogenous proteins in cells. Inter J Mol Sci. 2018;19(5):1313.

    Article 

    Google Scholar
     

  • Shakeran Z, Keyhanfar M, Varshosaz J, Sutherland DS. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater Sci Eng C. 2021;118: 111526.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Li W, Gai S, Yang G, Zhong C, Dai Y, He F, Yang P, Suh YD. A smart tumor microenvironment responsive nanoplatform based on upconversion nanoparticles for efficient multimodal imaging guided therapy. Biomater Sci. 2019;7(3):951–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang B, Jiang J, Jiang L, Zheng P, Wang F, Zhou Y, Chen Z, Li M, Lian M, Tang S, Liu X, Peng H, Wang Q. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol. 2020;149:108–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu Q, Lin G, Stephen ZR, Chung S, Wang H, Patton VK, Gebhart RN, Zhang M. In vivo serum enabled production of ultrafine nanotherapeutics for cancer treatment. Mater Today. 2020;38:10–23.

    Article 
    CAS 

    Google Scholar
     

  • Kim CS, Mathew AP, Vasukutty A, Uthaman S, Joo SY, Bae EH, Ma SK, Park I-K, Kim SW. Glycol chitosan-based tacrolimus-loaded nanomicelle therapy ameliorates lupus nephritis. J Nanobiotech. 2021;19(1):1–17.

    Article 
    CAS 

    Google Scholar
     

  • Suh SH, Mathew AP, Choi HS, Vasukutty A, Kim CS, Kim IJ, Ma SK, Kim SW, Park I-K, Bae EH. Kidney-accumulating olmesartan-loaded nanomicelles ameliorate the organ damage in a murine model of Alport syndrome. Inter J Pharm. 2021;600: 120497.

    Article 
    CAS 

    Google Scholar
     

  • Jiang L, Zhang M, Bai Y, Cui F, Zhang C, Wang Z, Si S, Yang L, Wang Y, Zhang Y, Li L, Liu S, Wei X, Wang Y, Xu Y, Meng J. O-carboxymethyl chitosan based pH/hypoxia-responsive micelles relieve hypoxia and induce ROS in tumor microenvironment. Carbohydr Polym. 2022;275: 118611.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang L, Wang Y, Wei X, Yang L, Liu S, Wang Y, Xu Y, Wang Z, Zhang C, Zhang M, Zhang Y, Jin F, Yin X. Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment. Carbohydr Polym. 2022;277: 118891.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen M-A, Wyatt H, Susser L, Geoffrion M, Rasheed A, Duchez A-C, Cottee ML, Afolayan E, Farah E, Kahiel Z, Côté M, Gadde S, Rayner KJ. Delivery of MicroRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano. 2019;13(6):6491–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Tang C, Yin C. Co-delivery of doxorubicin and siRNA by all-trans retinoic acid conjugated chitosan-based nanocarriers for multiple synergistic antitumor efficacy. Carbohydr Polym. 2022;283: 119097.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Z, Hu G, Zhao K. Mannose-anchored quaternized chitosan/thiolated carboxymethyl chitosan composite NPs as mucoadhesive carrier for drug delivery. Carbohydr Polym. 2022;283: 121562.

    Article 

    Google Scholar
     

  • Tang W, Panja S, Jogdeo CM, Tang S, Ding L, Yu A, Foster KW, Dsouza DL, Chhonker YS, Jensen-Smith H, Jang H-S, Boesen EI, Murry DJ, Padanilam B, Oupický D. Modified chitosan for effective renal delivery of siRNA to treat acute kidney injury. Biomaterials. 2022;285: 121562.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Lin T, Chen W, Cao W, Zhang C, Wang T, Ding M, Zhao S, Wei H, Guo H, Zhao X. Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials. 2019;219: 119368.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zelepukin IV, Yaremenko AV, Shipunova VO, Babenyshev AV, Balalaeva IV, Nikitin PI, Deyev SM, Nikitin MP. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale. 2019;11(4):1636–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenner JS, Pan DC, Myerson JW, Marcos-Contreras OA, Villa CH, Patel P, Hekierski H, Chatterjee S, Tao JQ, Parhiz H, Bhamidipati K, Uhler TG, Hood ED, Kiseleva RY, Shuvaev VS, Shuvaeva T, Khoshnejad M, Johnston I, Gregory JV, Lahann J, Wang T, Cantu E, Armstead WM, Mitragotri S, Muzykantov V. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Commun Nat. 2018. https://doi.org/10.1038/s41467-018-05079-7.

    Article 

    Google Scholar
     

  • Wang Y, Zhou C, Ding Y, Liu M, Tai Z, Jin Q, Yang Y, Li Z, Yang M, Gong W, Gao C. Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K1. Inter J Pharm. 2021;592: 120084.

    Article 
    CAS 

    Google Scholar
     

  • Ding Y, Lv B, Zheng J, Lu C, Liu J, Lei Y, Yang M, Wang Y, Li Z, Yang Y, Gong W, Han J, Gao C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J Control Release. 2022;341:702–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TGM, Maysinger D, Kakkar A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release. 2020;317:216–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Luo R, Liang X, Wu Q, Gong C. Recent advances in enhancing reactive oxygen species based chemodynamic therapy. Chin Chem Lett. 2022;33(5):2213–30.

    Article 
    CAS 

    Google Scholar
     

  • Zhang C, Li J, Xiao M, Wang D, Qu Y, Zou L, Zheng C, Zhang J. Oral colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy. Chin Chem Lett. 2022;33(11):4924–9.

    Article 
    CAS 

    Google Scholar
     

  • Jin R, Liu Z, Liu T, Yuan P, Bai Y, Chen X. Redox-responsive micelles integrating catalytic nanomedicine and selective chemotherapy for effective tumor treatment. Chin Chem Lett. 2021;32(10):3076–82.

    Article 
    CAS 

    Google Scholar
     

  • Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration. 2022;2(2):20210238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anirudhan TS, Mohan M, Rajeev MR. Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin. Int J Biol Macromol. 2022;201:378–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao D, Gao Q, Sheng Y, Li S, Kong Y. Construction of a dual-responsive dual-drug delivery platform based on the hybrids of mesoporous silica, sodium hyaluronate, chitosan and oxidized sodium carboxymethyl cellulose. Int J Biol Macromol. 2022;202:37–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin T, Liu Y, Yang M, Wang L, Zhou J, Huo M. Novel chitosan derivatives with reversible cationization and hydrophobicization for tumor cytoplasm-specific burst Co-delivery of siRNA and chemotherapeutics. ACS Appl Mater Inter. 2020;12(13):14770–83.

    Article 
    CAS 

    Google Scholar
     

  • Lohiya G, Katti DS. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydr Polym. 2022;277: 118822.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Resen AK, Atiroğlu A, Atiroğlu V, Guney Eskiler G, Aziz IH, Kaleli S, Özacar M. Effectiveness of 5-Fluorouracil and gemcitabine hydrochloride loaded iron-based chitosan-coated MIL-100 composite as an advanced, biocompatible, pH-sensitive and smart drug delivery system on breast cancer therapy. Int J Biol Macromol. 2022;198:175–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu Z, Wang D, Qi Y, Liu J, Zhou T, Rao W, Hu K. Autologous-cancer-cryoablation-mediated nanovaccine augments systematic immunotherapy. Mater Horizons. 2023;10:1661–77.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Jin F, Shu G, Xu X, Qi J, Kang X, Yu H, Lu K, Jiang S, Han F, You J, Du Y, Ji J. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials. 2019;211:57–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surendran SP, Thomas RG, Moon MJ, Park R, Lee JH, Jeong YY. A bilirubin-conjugated chitosan nanotheranostics system as a platform for reactive oxygen species stimuli-responsive hepatic fibrosis therapy. Acta Biomater. 2020;116:356–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen S-X, Xue F, Kuang Y, Chen S, Sheng D, Chen H. A self-activating nanovesicle with oxygen-depleting capability for efficient hypoxia-responsive chemo-thermo cancer therapy. Biomaterials. 2021;269: 120533.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia D, Ma X, Lu Y, Li X, Hou S, Gao Y, Xue P, Kang Y, Xu Z. ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chin Chem Lett. 2021;32(1):162–7.

    Article 
    CAS 

    Google Scholar
     

  • Chen S-X, Zhang J, Xue F, Liu W, Kuang Y, Gu B, Song S, Chen H. In situ forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis. Bioact Mater. 2023;21:86–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Cook AB, Decuzzi P. Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano. 2021;15(2):2068–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi D, Xing L, Shen L, Sun W, Cai C, Xue C, Song X, Yu H, Jiang H, Li C, Jin Q, Zhang Z. A GSH-depleted platinum(IV) prodrug triggers ferroptotic cell death in breast cancer. Chin Chem Lett. 2022;33(10):4595–9.

    Article 
    CAS 

    Google Scholar
     

  • Guo HH, Ma C, Zheng WS, Luo Y, Li C, Li XL, Ma XL, Feng CL, Zhang TT, Han YX, Luo ZG, Zhan Y, Li R, Wang LL, Jiang JD. Dual-stimuli-responsive gut microbiota-targeting berberine-CS/PT-NPs improved metabolic status in obese hamsters. Adv Funct Mater. 2019;29(14):1808197.

    Article 

    Google Scholar
     

  • Schilling AL, Cannon E, Lee SE, Wang EW, Little SR. Advances in controlled drug delivery to the sinonasal mucosa. Biomaterials. 2022;282: 121430.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang TW, Wei CK, Su HW, Fang KM. Chitosan promotes aquaporin formation and inhibits mucociliary differentiation of nasal epithelial cells through increased TGF-β1 production. J Tissue Eng Regen Med. 2017;11(12):3567–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popescu R, Ghica MV, Dinu-Pîrvu CE, Anuța V, Lupuliasa D, Popa L. New opportunity to formulate intranasal vaccines and drug delivery systems based on chitosan. Inter J Mol Sci. 2020;21(14):5016.

    Article 
    CAS 

    Google Scholar
     

  • Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022;198:101–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin H, Zhao Z, Lan Q, Zhou H, Mai Z, Wang Y, Ding X, Zhang W, Pi J, Evans CE, Liu X. Nasal delivery of hesperidin/chitosan nanoparticles suppresses cytokine storm syndrome in a mouse model of acute lung injury. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2020.592238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi Y, Qian K, Chen J, Yifeng E, Shi Y, Li H, Zhao L. A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound healing via detrimental factor neutralization and ROS scavenging. J Nanobiotech. 2021;19(1):1–20.

    Article 

    Google Scholar
     

  • Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW. Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym. 2022;290: 119500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-nanostar-chitosan-mediated delivery of SARS-CoV-2 DNA vaccine for respiratory mucosal immunization: development and proof-of-principle. ACS Nano. 2021;15(11):17582–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun M, Qin D, Fan P, Chen X, Liu Y. Chitosan-centered nanosystems as sustained therapeutics for allergic rhinitis intervention: inhibition of histamine-induced cascades. J Control Release. 2021;335:422–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlachet I, Sosnik A. mixed mucoadhesive amphiphilic polymeric nanoparticles cross a model of nasal septum epithelium in vitro. ACS Appl Mater Inter. 2019;11(24):21360–71.

    Article 
    CAS 

    Google Scholar
     

  • Sukumar UK, Bose RJC, Malhotra M, Babikir HA, Afjei R, Robinson E, Zeng Y, Chang E, Habte F, Sinclair R, Gambhir SS, Massoud TF, Paulmurugan R. Intranasal delivery of targeted polyfunctional gold–iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019;218: 119342.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González LF, Acuña E, Arellano G, Morales P, Sotomayor P, Oyarzun-Ampuero F, Naves R. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: a promising simple, effective, non-invasive, and low-cost therapy. J Control Release. 2021;331:443–59.

    Article 
    PubMed 

    Google Scholar
     

  • Yu H, Lin H, Xie Y, Qu M, Jiang M, Shi J, Hong H, Xu H, Li L, Liao G, Wu Z, Zhou Z. MUC1 vaccines using β-cyclodextrin grafted chitosan (CS-g-CD) as carrier via host-guest interaction elicit robust immune responses. Chin Chem Lett. 2022;33(11):4882–5.

    Article 
    CAS 

    Google Scholar
     

  • Zhou C, Yang Z, Xun X, Ma L, Chen Z, Hu X, Wu X, Wan Y, Ao H. De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioact Mater. 2022;13:212–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Cintron-Cruz JA, Freedman BR, Lee M, Johnson C, Ijaz H, Mooney DJ. Rapid ultratough topological tissue adhesives. Adv Mater. 2022;34(35):2205567.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Wang D, Wen J, Yu P, Liu J, Li J, Chu H. Chemically grafted nanozyme composite cryogels to enhance antibacterial and biocompatible performance for bioliquid regulation and adaptive bacteria trapping. ACS Nano. 2021;15(12):19672–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng S, Pan M, Hu D, Han R, Li L, Bei Z, Li Y, Sun A, Qian Z. Adhesive chitosan-based hydrogel assisted with photothermal antibacterial property to prompt mice infected skin wound healing. Chin Chem Lett. 2023;34:108276.

    Article 
    CAS 

    Google Scholar
     

  • Liang Y, Li Z, Huang Y, Yu R, Guo B. Dual-Dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano. 2021;15(4):7078–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Li M, Yang Y, Qiao L, Xu H, Guo B. pH/Glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano. 2022;16(2):3194–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu X, Liu K, Jiao B, Luo K, Ren J, Zhang G, Yu Q, Gan Z. Mucoadhesive nanoparticles based on ROS activated gambogic acid prodrug for safe and efficient intravesical instillation chemotherapy of bladder cancer. J Control Release. 2020;324:493–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldberg M, Manzi A, Conway P, Cantin S, Mishra V, Singh A, Pearson AT, Goldberg ER, Goldberger S, Flaum B, Hasina R, London NR, Gallia GL, Bettegowda C, O’Neill SE, Aydin E, Zhavoronkov A, Vidal A, Soto A, Alonso MJ, Rosenberg AJ, Lingen MW, D’Cruz A, Agrawal N, Izumchenko E. A nanoengineered topical transmucosal cisplatin delivery system induces anti-tumor response in animal models and patients with oral cancer. Nat Commun. 2022;13(1):4829.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Wang Y, Zhao J, Rong H, Chen Y, Xiong M, Ye X, Yu S, Hu H. Coordinated regulation of BACH1 and mitochondrial metabolism through tumor-targeted self-assembled nanoparticles for effective triple negative breast cancer combination therapy. Acta Pharm Sin B. 2022;12(10):3934–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su J, Lu S, Jiang S, Li B, Liu B, Sun Q, Li J, Wang F, Wei Y. Engineered protein photo-thermal hydrogels for outstanding in situ tongue cancer therapy. Adv Mater. 2021;33(21):2100619.

    Article 
    CAS 

    Google Scholar
     

  • Tapola NS, Lyyra ML, Kolehmainen RM, Sarkkinen ES, Schauss AG. Safety aspects and cholesterol-lowering efficacy of chitosan tablets. JACN. 2013;27(1):22–30.


    Google Scholar
     

  • Turley JL, Moran HBT, McEntee CP, O’Grady K, Muñoz-Wolf N, Jin L, Follmann F, Andersen P, Andersson M, Lavelle EC. Chitin-derived polymer deacetylation regulates mitochondrial reactive oxygen species dependent cGAS-STING and NLRP3 inflammasome activation. Biomaterials. 2021;275: 120961.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohan K, Ganesan AR, Muralisankar T, Jayakumar R, Sathishkumar P, Uthayakumar V, Chandirasekar R, Revathi N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trend Food Sci Tech. 2020;105:17–42.

    Article 
    CAS 

    Google Scholar
     

  • Faber MA, Pascal M, El Kharbouchi O, Sabato V, Hagendorens MM, Decuyper II, Bridts CH, Ebo DG. Shellfish allergens: tropomyosin and beyond. Allergy. 2017;72(6):842–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paiva WS, Queiroz MF, Araujo Sabry D, Santiago ALCMA, Sassaki GL, Batista ACL, Rocha HAO. Preparation, structural characterization, and property investigation of gallic acid-grafted fungal chitosan conjugate. J Fungi. 2021;7(10):812.

    Article 
    CAS 

    Google Scholar
     

  • Zhang X, Wang Y, Wei G, Zhao J, Yang G, Zhou S. Stepwise dual targeting and dual responsive polymer micelles for mitochondrion therapy. J Control Release. 2020;322:157–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu F, Huang X, Wang Y, Zhou S. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv Mater. 2020;32(16):1906745.

    Article 
    CAS 

    Google Scholar
     

  • Suzuki K, Kim KS, Bae YH. Long-term oral administration of Exendin-4 to control type 2 diabetes in a rat model. J Control Release. 2019;294:259–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng X, Xie J, Zhang X, Sun W, Zhao H, Li Y, Wang C. An overview of polymeric nanomicelles in clinical trials and on the market. Chin Chem Lett. 2021;32(1):243–57.

    Article 
    CAS 

    Google Scholar
     

  • Zhang M, Ma Y, Wang Z, Han Z, Gao W, Zhou Q, Gu Y. A CD44-targeting programmable drug delivery system for enhancing and sensitizing chemotherapy to drug-resistant cancer. ACS Appl Mater Inter. 2019;11(6):5851–61.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Khan AR, Yang X, Shi Y, Zhao X, Zhai G. A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer. J Nanobiotech. 2021;19(1):1–17.


    Google Scholar
     

  • Huang K, Liu W, Wei W, Zhao Y, Zhuang P, Wang X, Wang Y, Hu Y, Dai H. Photothermal hydrogel encapsulating intelligently bacteria-capturing bio-MOF for infectious wound healing. ACS Nano. 2022;16:19491–508.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gou S, Huang Y, Wan Y, Ma Y, Zhou X, Tong X, Huang J, Kang Y, Pan G, Dai F, Xiao B. Multi-bioresponsive silk fibroin-based nanoparticles with on-demand cytoplasmic drug release capacity for CD44-targeted alleviation of ulcerative colitis. Biomaterials. 2019;212:39–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Liu S, Ma Y, Ma L, Zu M, Sun J, Dai F, Duan L, Xiao B. Oral nanomotor-enabled mucus traverse and tumor penetration for targeted chemo-sono-immunotherapy against colon cancer. Small. 2022;18(42):2203466.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Zhang P, Luo J, Hu D, Huang Y, Zhang Z-R, Fu Y, Gong T. Chondroitin sulfate-linked prodrug nanoparticles target the golgi apparatus for cancer metastasis treatment. ACS Nano. 2019;13(8):9386–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo J, Zhang P, Zhao T, Jia M, Yin P, Li W, Zhang Z-R, Fu Y, Gong T. Golgi apparatus-targeted chondroitin-modified nanomicelles suppress hepatic stellate cell activation for the management of liver fibrosis. ACS Nano. 2019;13(4):3910–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He Y, Sun M, Wang J, Yang X, Lin C, Ge L, Ying C, Xu K, Liu A, Wu L. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis. Acta Biomater. 2022;151:512–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao N, Zhang Y, Yang Z, Xu L, Zhao K, Xin Q, Gao J, Shi J, Zhong J, Wang H. Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chin Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.108820.

    Article 

    Google Scholar
     

  • Zhu H, Monavari M, Zheng K, Distler T, Ouyang L, Heid S, Jin Z, He J, Li D, Boccaccini AR. 3D bioprinting of multifunctional dynamic nanocomposite bioinks incorporating cu-doped mesoporous bioactive glass nanoparticles for bone tissue engineering. Small. 2022;18:2104996.

    Article 
    CAS 

    Google Scholar
     

  • Ma W, Ma H, Qiu P, Zhang H, Yang Z, Ma B, Chang J, Shi X, Wu C. Sprayable β-FeSi2 composite hydrogel for portable skin tumor treatment and wound healing. Biomaterials. 2021;279: 121225.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu H, Li Z, Zhangji A, Guo B. Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Letters. 2022;14(1):185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theocharidis G, Rahmani S, Lee S, Li Z, Lobao A, Kounas K, Katopodi XL, Wang P, Moon S, Vlachos IS, Niewczas M, Mooney D, Veves A. Murine macrophages or their secretome delivered in alginate dressings enhance impaired wound healing in diabetic mice. Biomaterials. 2022;288: 121692.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu Y, Yang Z, Pan Z, Hao Y, Wang C, Dong Z, Li Q, Han Y, Tian L, Feng L, Liu Z. Metallo-alginate hydrogel can potentiate microwave tumor ablation for synergistic cancer treatment. Sci Adv. 2022;8(31):eabo5285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou CY, Lei XX, Hu JJ, Jiang YL, Li QJ, Song YT, Zhang QY, Li-Ling J, Xie HQ. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater. 2022;16:388–402.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang B, Lee RJ, Tao L. First-in-human transcatheter endocardial alginate-hydrogel implantation for the treatment of heart failure. Eur Heart J. 2023;44(4):326–326.

    Article 
    PubMed 

    Google Scholar
     

  • Zheng X, Hou Y, Zhang Q, Zheng Y, Wu Z, Zhang X, Lin JM. 3D microgel with extensively adjustable stiffness and homogeneous microstructure for metastasis analysis of solid tumor. Chin Chem Lett. 2023;34(11): 108319.

    Article 
    CAS 

    Google Scholar
     

  • Ye JJ, Li LF, Hao RN, Gong M, Wang T, Song J, Meng QH, Zhao NN, Xu FJ, Lvov Y, Zhang LQ, Xue JJ. Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release. Bioact Mater. 2023;21:284–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Choe G, Kim SW, Park J, Park J, Kim S, Kim YS, Ahn Y, Jung DW, Williams DR, Lee JY. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225: 119513.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qian B, Yang Q, Wang M, Huang S, Jiang C, Shi H, Long Q, Zhou M, Zhao Q, Ye X. Encapsulation of lyophilized platelet-rich fibrin in alginate-hyaluronic acid hydrogel as a novel vascularized substitution for myocardial infarction. Bioact Mater. 2022;7:401–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu W, Zhao N, Yin Q, Zhao X, Guo K, Xian Y, Li S, Wang C, Zhu M, Du Y, Xu F-J, Wang C, Zhou J. Injectable hydrogels encapsulating dual-functional Au@Pt core-shell nanoparticles regulate infarcted microenvironments and enhance the therapeutic efficacy of stem cells through antioxidant and electrical integration. ACS Nano. 2023;17(3):2053–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou J, Liu W, Zhao X, Xian Y, Wu W, Zhang X, Zhao N, Xu FJ, Wang C. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Adv Sci. 2021;8(20):e2100505.

    Article 

    Google Scholar
     

  • Huang Y, Wang J, Yue C, Wang R, Guo Q, Wang T, Wang D, Dong H, Hu Y, Tao G, Li X. An in situ assembled trapping gel repairs spinal cord injury by capturing glutamate and free calcium ions. Small. 2023;19:2206229.

    Article 
    CAS 

    Google Scholar
     

  • Panebianco CJ, Rao S, Hom WW, Meyers JH, Lim TY, Laudier DM, Hecht AC, Weir MD, Weiser JR, Iatridis JC. Genipin-crosslinked fibrin seeded with oxidized alginate microbeads as a novel composite biomaterial strategy for intervertebral disc cell therapy. Biomaterials. 2022;287: 121641.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei X, Chen S, Xie T, Chen H, Jin X, Yang J, Sahar S, Huang H, Zhu S, Liu N, Yu C, Zhu P, Wang W, Zhang W. An MMP-degradable and conductive hydrogel to stabilize HIF-1alpha for recovering cardiac functions. Theranostics. 2022;12(1):127–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz Taboada G, Dosta P, Edelman ER, Artzi N. Sprayable hydrogel for instant sealing of vascular anastomosis. Adv Mat. 2022;34(43):2203087.

    Article 

    Google Scholar
     

  • Zhang X, Li Y, Ma Z, He D, Li H. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact Mater. 2021;6(11):3692–704.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Zhang C, Deng D, Gu Y, Wang H, Zhong Q. Multiple stimuli-responsive mxene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing. Small. 2022;18(5): e2104368.

    Article 
    PubMed 

    Google Scholar
     

  • Sun L, Shen F, Tian L, Tao H, Xiong Z, Xu J, Liu Z. ATP-responsive smart hydrogel releasing immune adjuvant synchronized with repeated chemotherapy or radiotherapy to boost antitumor immunity. Adv Mater. 2021;33(18): e2007910.

    Article 
    PubMed 

    Google Scholar
     

  • Fu B, Liu Q, Liu M, Chen X, Lin H, Zheng Z, Zhu J, Dai C, Dong X, Yang D-P. Carbon dots enhanced gelatin/chitosan bio-nanocomposite packaging film for perishable foods. Chin Chem Lett. 2022;33(10):4577–82.

    Article 
    CAS 

    Google Scholar
     

  • Feng Y, Quinnell SP, Lanzi AM, Vegas AJ. Alginate-based amphiphilic block copolymers as a drug codelivery platform. Nano Lett. 2021;21(18):7495–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev. 2016;96:54–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaamonde García C, Domínguez H, Blanco FJ, Meijide Failde R. Anti-fibrotic effect of different fucoidans in osteoathritic fibroblast-like-synoviocytes. Ann Rheum Dis. 2020;79(Suppl 1):1339–40.

    Article 

    Google Scholar
     

  • Jun H, Jeon C, Kim S, Song N, Jo H, Yang M, Lee D. Nanoassemblies of self-immolative boronate-bridged retinoic acid dimeric prodrug as a clot-targeted self-deliverable antithrombotic nanomedicine. ACS Nano. 2023;17(13):12336–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi S, Luo R, Han X, Nie W, Ye N, Fu C, Gao F. pH/ROS dual-sensitive natural polysaccharide nanoparticles enhance “one stone four birds” effect of rhein on ulcerative colitis. ACS Appl Mater Inter. 2022;14:50692–709.

    Article 
    CAS 

    Google Scholar
     

  • Yao Y, Zaw AM, Anderson DEJ, Jeong Y, Kunihiro J, Hinds MT, Yim EKF. Fucoidan and topography modification improved in situ endothelialization on acellular synthetic vascular grafts. Bioact Mater. 2023;22:535–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo R, Deng M, He X, Li M, Li J, He P, Liu H, Li M, Zhang Z, He Q. Fucoidan-functionalized activated platelet-hitchhiking micelles simultaneously track tumor cells and remodel the immunosuppressive microenvironment for efficient metastatic cancer treatment. Acta Pharmaceutica Sinica B. 2022;12(1):467–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun Y, Zhang X, Wu T, Zhang Z, Yang R, Liu W. YAP-suppressive nanodrug crosslinked self-immunoregulatory polysaccharide injectable hydrogel for attenuating cardiac fibrosis to treat myocardial infarction. Adv Funct Mater. 2023;33:2214468.

    Article 
    CAS 

    Google Scholar
     

  • Lai YH, Su CY, Cheng HW, Chu CY, Jeng LB, Chiang CS, Shyu WC, Chen SY. Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nat Commun. 2023;14(1):285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DuRoss AN, Landry MR, Thomas CR Jr, Neufeld MJ, Sun C. Fucoidan-coated nanoparticles target radiation-induced P-selectin to enhance chemoradiotherapy in murine colorectal cancer. Cancer Lett. 2021;500:208–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang T, Chen L, Huang Y, Wang J, Xu M, Zhou S, Gu X, Chen Y, Liang K, Pei Y, Song Q, Liu S, Ma F, Lu H, Gao X, Chen J. Metformin and docosahexaenoic acid hybrid micelles for premetastatic niche modulation and tumor metastasis suppression. Nano Lett. 2019;19(6):3548–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tylawsky DE, Kiguchi H, Vaynshteyn J, Gerwin J, Shah J, Islam T, Boyer JA, Boué DR, Snuderl M, Greenblatt MB, Shamay Y, Raju GP, Heller DA. P-selectin-targeted nanocarriers induce active crossing of the blood–brain barrier via caveolin-1-dependent transcytosis. Nat Mat. 2023;22(3):391–9.

    Article 
    CAS 

    Google Scholar
     

  • Chung CH, Lu KY, Lee WC, Hsu WJ, Lee WF, Dai JZ, Shueng PW, Lin CW, Mi FL. Fucoidan-based, tumor-activated nanoplatform for overcoming hypoxia and enhancing photodynamic therapy and antitumor immunity. Biomaterials. 2020;257: 120227.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo R, Deng M, He X, Li M, Li J, He P, Liu H, Li M, Zhang Z, He Q. Fucoidan-functionalized activated platelet-hitchhiking micelles simultaneously track tumor cells and remodel the immunosuppressive microenvironment for efficient metastatic cancer treatment. Acta Pharm Sin B. 2022;12(1):467–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon EY, Um SH, Park J, Jung Y, Cheon CH, Jeon H, Chung JJ. Precisely localized bone regeneration mediated by marine-derived microdroplets with superior BMP-2 binding affinity. Small. 2022;18(24):2200416.

    Article 
    CAS 

    Google Scholar
     

  • Zou Y, Chen X, Sun Y, Li P, Xu M, Fang P, Zhang S, Yuan G, Deng X, Hu H. Antibiotics-free nanoparticles eradicate Helicobacter pylori biofilms and intracellular bacteria. J Control Release. 2022;348:370–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moncada D, Rico M, Montero B, Rodríguez-Llamazares S, Feijoo-Bandín S, Gualillo O, Lago F, Aragón-Herrera A, Salavagione H, Pettinelli N, Bouza R, Farrag Y. Injectable hybrid hydrogels physically crosslinked based on carrageenan and green graphene for tissue repair. Int J Biol Macromol. 2023;235: 123777.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lokhande G, Carrow JK, Thakur T, Xavier JR, Parani M, Bayless KJ, Gaharwar AK. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater. 2018;70:35–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaiswal L, Shankar S, Rhim JW. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr Polym. 2019;224: 115191.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vinothini K, Rajendran NK, Munusamy MA, Alarfaj AA, Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded kappa-carrageenan grafted graphene oxide nanocarrier. Mater Sci Eng C Mater Biol Appl. 2019;100:676–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao J, Sun C, Li H, Dong X, Zhang X. Studies on the physicochemical properties, gelling behavior and drug release performance of agar/kappa-carrageenan mixed hydrogels. Int J Biol Macromol. 2020;154:878–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariia K, Arif M, Shi J, Song F, Chi Z, Liu C. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis. Int J Biol Macromol. 2021;183:435–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah S, Famta P, Shahrukh S, Jain N, Vambhurkar G, Srinivasarao DA, Raghuvanshi RS, Singh SB, Srivastava S. Multifaceted applications of ulvan polysaccharides: Insights on biopharmaceutical avenues. Int J Biol Macromol. 2023;234: 123669.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren Y, Aierken A, Zhao L, Lin Z, Jiang J, Li B, Wang J, Hua J, Tu Q. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven functional hydrogel for chronic diabetic wound healing. Carbohydr Polym. 2022;288: 119404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu D, Chen H, Huang C, Li G, Wang X, Jiang W, Fan K. H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv Funct Mater. 2022;32(16):2110268.

    Article 
    CAS 

    Google Scholar
     

  • Zhu D, Zheng Z, Luo G, Suo M, Li X, Duo Y, Tang BZ. Single injection and multiple treatments: an injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. Nano Today. 2021;37: 101091.

    Article 
    CAS 

    Google Scholar
     

  • Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater. 2022;15:103–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang WC, Ying R, Wang W, Guo Y, He Y, Mo X, Xue C, Mao X. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing. Adv Funct Mater. 2020;30(21):2000644.

    Article 
    CAS 

    Google Scholar
     

  • Wu H, Zhang R, Hu B, He Y, Zhang Y, Cai L, Wang L, Wang G, Hou H, Qiu X. A porous hydrogel scaffold mimicking the extracellular matrix with swim bladder derived collagen for renal tissue regeneration. Chin Chem Lett. 2021;32(12):3940–7.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Liu S, Hu F, Li Z, Li Z. N-Glycosylated type II collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chin Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.108762.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B. 2022;10(4):489–505.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yano S, Yamaguchi K, Shibata M, Ifuku S, Teramoto N. Photocrosslinked fish collagen peptide/chitin nanofiber composite hydrogels from marine resources: preparation, mechanical properties, and an in vitro study. Polymers. 2023;15(3):682.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qianqian O, Songzhi K, Yongmei H, Xianghong J, Sidong L, Puwang L, Hui L. Preparation of nano-hydroxyapatite/chitosan/tilapia skin peptides hydrogels and its burn wound treatment. Int J Biol Macromol. 2021;181:369–77.

    Article 
    PubMed 

    Google Scholar
     

  • Lv Z, Zhang C, Song W, Chen Q, Wang Y, Jiang H. Jellyfish collagen hydrolysate alleviates inflammation and oxidative stress and improves gut microbe composition in high-fat diet-fed mice. Mediat Inflamm. 2022;2022:1–8.


    Google Scholar
     

  • Jridi M, Bardaa S, Moalla D, Rebaii T, Souissi N, Sahnoun Z, Nasri M. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin. Inter J Biol Macromol. 2015;77:369–74.

    Article 
    CAS 

    Google Scholar
     

  • Du B, Deng G, Zaman F, Ma H, Li X, Chen J, Li T, Huang Y. Antioxidant cuttlefish collagen hydrolysate against ethyl carbamate-induced oxidative damage. RSC Adv. 2021;11(4):2337–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pozzolini M, Millo E, Oliveri C, Mirata S, Salis A, Damonte G, Arkel M, Scarfì S. Elicited ROS scavenging activity, photoprotective, and wound-healing properties of collagen-derived peptides from the marine sponge chondrosia reniformis. Mar Drugs. 2018;16(12):465.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howaili F, Mashreghi M, Shahri NM, Kompany A, Jalal R. Development and evaluation of a novel beneficent antimicrobial bioscaffold based on animal waste-fish swim bladder (FSB) doped with silver nanoparticles. Environ Res. 2020. https://doi.org/10.1016/j.envres.2020.109823.

    Article 
    PubMed 

    Google Scholar
     

  • Langasco R, Cadeddu B, Formato M, Lepedda AJ, Cossu M, Giunchedi P, Pronzato R, Rassu G, Manconi R, Gavini E. Natural collagenic skeleton of marine sponges in pharmaceutics: Innovative biomaterial for topical drug delivery. Mater Sci Eng C. 2017;70:710–20.

    Article 
    CAS 

    Google Scholar
     

  • Carvalho DN, Williams DS, Sotelo CG, Pérez-Martín RI, Mearns-Spragg A, Reis RL, Silva TH. Marine origin biomaterials using a compressive and absorption methodology as cell-laden hydrogel envisaging cartilage tissue engineering. Biomater Adv. 2022;137: 212843.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves AL, Costa-Gouveia J, Vieira de Castro J, Sotelo CG, Vázquez JA, Pérez-Martín RI, Torrado E, Neves N, Reis RL, Castro AG, Silva TH. Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomater. 2022;141:123–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nurilmala M, Suryamarevita H, Husein Hizbullah H, Jacoeb AM, Ochiai Y. Fish skin as a biomaterial for halal collagen and gelatin. Saudi J Biol Sci. 2022;29(2):1100–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maihemuti A, Zhang H, Lin X, Wang Y, Xu Z, Zhang D, Jiang Q. 3D-printed fish gelatin scaffolds for cartilage tissue engineering. Bioact Mater. 2023;26:77–87.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves AL, Carvalho AC, Machado I, Diogo GS, Fernandes EM, Castro VIB, Pires RA, Vázquez JA, Pérez-Martín RI, Alaminos M, Reis RL, Silva TH. Cell-laden marine gelatin methacryloyl hydrogels enriched with ascorbic acid for corneal stroma regeneration. Bioengineering. 2023;10(1):62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakr MA, Sakthivel K, Hossain T, Shin SR, Siddiqua S, Kim J, Kim K. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A. 2022;110(3):708–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao X, Zhang Z, Sun L, Luo Z, Zhao Y. Multifunctional fish gelatin hydrogel inverse opal films for wound healing. J Nanobiotechnol. 2022;20(1):355.

    Article 
    CAS 

    Google Scholar
     

  • Shen S, Liu R, Song C, Shen T, Zhou Y, Guo J, Kong B, Jiang Q. Fish scale-derived scaffolds with MSCs loading for photothermal therapy of bone defect. Nano Res. 2023;16(5):7383–92.

    Article 
    CAS 

    Google Scholar
     

  • Lu Y, Zhu X, Hu C, Li P, Zhao M, Lu J, Xia G. A fucoidan-gelatin wound dressing accelerates wound healing by enhancing antibacterial and anti-inflammatory activities. Inter J Biol Macromol. 2022;223:36–48.

    Article 
    CAS 

    Google Scholar
     

  • Khoshnoudi-Nia S, Forghani Z, Jafari SM. A systematic review and meta-analysis of fish oil encapsulation within different micro/nanocarriers. Crit Rev Food Sci Nutr. 2022;62(8):2061–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deshpande D, Janero DR, Amiji M. Engineering of an omega-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17beta-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. Nanomedicine. 2013;9(7):885–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashfaq W, Rehman K, Siddique MI, Khan Q-A-A. Eicosapentaenoic acid and docosahexaenoic acid from fish oil and their role in cancer research. Food Rev Inter. 2019;36(8):795–814.

    Article 

    Google Scholar
     

  • Dong P, Liu J, Lv H, Wu J, Zhang N, Wang S, Li X, Hu J, Wang A, Li DJ, Wang D, Cao S, Xie L, Shi Y. The enhanced antitumor activity of the polymeric conjugate covalently coupled with docetaxel and docosahexaenoic acid. Biomat Sci. 2022;10(13):3454–65.

    Article 
    CAS 

    Google Scholar
     

  • Dong P, Lv H, Jia W, Liu J, Wang S, Li X, Hu J, Zhao L, Shi Y. Polysaccharide dextran-based conjugate for selective co-delivery of two synergistic drugs docetaxel and docosahexaenoic acid to tumor cells. Drug Deliv. 2022;30(1):40–50.

    Article 
    PubMed Central 

    Google Scholar
     

  • Wolff AC, Donehower RC, Carducci MK, Carducci MA, Brahmer JR, Zabelina Y, Bradley MO, Anthony FH, Swindell CS, Witman PA, Webb NL, Baker SD. Phase I study of docosahexaenoic acid-paclitaxel: a taxane-fatty acid conjugate with a unique pharmacology and toxicity profile. Clin Cancer Res. 2003;9(10 Pt 1):3589–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Bradley MO, Webb NL, Anthony FH, Devanesan P, Witman PA, Hemamalini S, Chander MC, Baker SD, He L, Horwitz SB, Swindell CS. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel. Clin Cancer Res. 2001;7(10):3229–38.

    CAS 
    PubMed 

    Google Scholar
     

  • Wen X, Reynolds L, Mulik RS, Kim SY, Van Treuren T, Nguyen LH, Zhu H, Corbin IR. Hepatic arterial infusion of low-density lipoprotein docosahexaenoic acid nanoparticles selectively disrupts redox balance in hepatoma cells and reduces growth of orthotopic liver tumors in rats. Gastroenterology. 2016;150(2):488–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Cui L, Xu J, Xian S, Meng F, Zhan C, Wang H. De novo engineering of both an omega-3 fatty acid-derived nanocarrier host and a prodrug guest to potentiate drug efficacy against colorectal malignancies. Biomaterials. 2022;290: 121814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cater RJ, Chua GL, Erramilli SK, Keener JE, Choy BC, Tokarz P, Chin CF, Quek DQY, Kloss B, Pepe JG, Parisi G, Wong BH, Clarke OB, Marty MT, Kossiakoff AA, Khelashvili G, Silver DL, Mancia F. Structural basis of omega-3 fatty acid transport across the blood–brain barrier. Nature. 2021;595(7866):315–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez Campano CG, Macleod MJ, Aucott L, Thies F. Marine-derived n-3 fatty acids therapy for stroke. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD012815.pub2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng J, Yu W, Dong X, Zhao S, Wang Z, Liu Y, Wong MS, Wang Y. A nanoencapsulation suspension biomimetic of milk structure for enhanced maternal and fetal absorptions of DHA to improve early brain development. Nanomedicine. 2019;15(1):119–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bor G, Lin JH, Lin KY, Chen HC, Prajnamitra RP, Salentinig S, Hsieh PCH, Moghimi SM, Yaghmur A. PEGylation of phosphatidylglycerol/docosahexaenoic acid hexosomes with d-α-tocopheryl succinate poly(ethylene glycol)2000 induces morphological transformation into vesicles with prolonged circulation times. ACS Appl Mater Inter. 2022;14(43):48449–63.

    Article 
    CAS 

    Google Scholar
     

  • Guo P, Si M, Wu D, Xue HY, Hu W, Wong HL. Incorporation of docosahexaenoic acid (DHA) enhances nanodelivery of antiretroviral across the blood-brain barrier for treatment of HIV reservoir in brain. J Control Release. 2020;328:696–709.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohwer N, Jelleschitz J, Höhn A, Weber D, Kühl AA, Wang C, Ohno R-I, Kampschulte N, Pietzner A, Schebb NH, Weylandt K-H, Grune T. Prevention of colitis-induced liver oxidative stress and inflammation in a transgenic mouse model with increased omega-3 polyunsaturated fatty acids. Redox Biol. 2023;64: 102803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calle D, Negri V, Ballesteros P, Cerdan S. Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics. 2015;5(5):489–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esbah Tabaei PS, Asadian M, Ghobeira R, Cools P, Thukkaram M, Derakhshandeh PG, Abednatanzi S, Van Der Voort P, Verbeken K, Vercruysse C, Declercq H, Morent R, De Geyter N. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering. Carbohydr Polym. 2021;253:117211.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibiyeye KM, Nordin N, Ajat M, Zuki ABZ. Ultrastructural changes and antitumor effects of doxorubicin/thymoquinone-loaded CaCO3 nanoparticles on breast cancer cell line. Front Oncol. 2019;9:599.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammadi NI, Abba Y, Hezmee MNM, Razak ISA, Jaji AZ, Isa T, Mahmood SK, Zakaria M. Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharm Res. 2017;34(6):1193–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Inter Sci. 2020;279: 102157.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Li W, Dong S, Gai S, Dong Y, Yang D, Dai Y, He F, Yang P. Degradable calcium phosphate-coated upconversion nanoparticles for highly efficient chemo-photodynamic therapy. ACS Appl Mater Inter. 2019;11(51):47659–70.

    Article 
    CAS 

    Google Scholar
     

  • Huang H, Du M, Chen J, Zhong S, Wang J. Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery. Mater Sci Eng C. 2020;113: 110969.

    Article 
    CAS 

    Google Scholar
     

  • Baek JW, Rezk AI, Kim KS, Park H, Chun S, Kim B-S. Marine plankton exoskeleton-derived honeycombed hydroxyapatite bone granule for bone tissue engineering. Mater Design. 2022;224: 111372.

    Article 
    CAS 

    Google Scholar
     

  • Balu SK, Sampath V, Andra S, Alagar S, Manisha Vidyavathy S. Fabrication of carbon and silver nanomaterials incorporated hydroxyapatite nanocomposites: enhanced biological and mechanical performances for biomedical applications. Mater Sci Eng. 2021;128: 112296.

    Article 
    CAS 

    Google Scholar
     

  • Surya P, Nithin A, Sundaramanickam A, Sathish M. Synthesis and characterization of nano-hydroxyapatite from Sardinella longiceps fish bone and its effects on human osteoblast bone cells. J Mech Behav Biomed Mater. 2021;119: 104501.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sulpis O, Jeansson E, Dinauer A, Lauvset SK, Middelburg JJ. Calcium carbonate dissolution patterns in the ocean. Nat Geosci. 2021;14(6):423–8.

    Article 
    CAS 

    Google Scholar
     

  • Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Society Rev. 2022;51(18):7883–943.

    Article 
    CAS 

    Google Scholar
     

  • H.K. Kiranda, R. Mahmud, D. Abubakar, Z.A. Zakaria. 2018. Fabrication, Characterization and Cytotoxicity of Spherical-Shaped Conjugated Gold-Cockle Shell Derived Calcium Carbonate Nanoparticles for Biomedical Applications. Nanoscale Res Lett. https://doi.org/10.1186/s11671-017-2411-3

  • Parhi R. Drug delivery applications of chitin and chitosan: a review. Environ Chem Lett. 2020;18(3):577–94.

    Article 
    CAS 

    Google Scholar
     

  • Huang L, Shen M, Morris GA, Xie J. Sulfated polysaccharides: Immunomodulation and signaling mechanisms, Trend. Food Sci Technol. 2019;92:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Chen G, Svirskis D, Lu W, Ying M, Huang Y, Wen J. N -trimethyl chitosan nanoparticles and CSKSSDYQC peptide: N -trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J Control Release. 2018;277:142–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei X, Cui C, Fan C, Wu T, Li Y, Zhang X, Wang K, Pang Y, Yao P, Yang J. Injectable hydrogel based on dodecyl-modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy. Inter J Biol Macrom. 2022;199:401–12.

    Article 
    CAS 

    Google Scholar
     

  • Hu Y, Zhang S, Wen Z, Fu H, Hu J, Ye X, Kang L, Li X, Yang X. Oral delivery of curcumin via multi-bioresponsive polyvinyl alcohol and guar gum based double-membrane microgels for ulcerative colitis therapy. Inter J Biol Macrom. 2022;221:806–20.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Hetjens L, Wolter N, Li H, Shi X, Pich A. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin. J Adv Res. 2022;43:87–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee SH, Song JG, Han H-K. Development of pH-responsive organic-inorganic hybrid nanocomposites as an effective oral delivery system of protein drugs. J Control Release. 2019;311–312:74–84.

    Article 
    PubMed 

    Google Scholar
     

  • Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo. J Control Release. 2019;313:1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, Guo S, Hovgaard L, Yang M, Gan Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 2018;151:13–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin PY, Chiu YL, Huang JH, Chuang EY, Mi FL, Lin KJ, Juang JH, Sung HW, Leong KW. Oral nonviral gene delivery for chronic protein replacement therapy. Adv Sci. 2018;5(8):1701079.

    Article 

    Google Scholar
     

  • Chen Y, Wu J, Wang J, Zhang W, Xu B, Xu X, Zong L. Targeted delivery of antigen to intestinal dendritic cells induces oral tolerance and prevents autoimmune diabetes in NOD mice. Diabetologia. 2018;61(6):1384–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu W, Chao Y, Jin Q, Chen L, Shen J-J, Zhu J, Chai Y, Lu P, Yang N, Chen M, Yang Y, Chen Q, Liu Z. Oral delivery of therapeutic antibodies with a transmucosal polymeric carrier. ACS Nano. 2023;17:4373–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li G, Wang S, Deng D, Xiao Z, Dong Z, Wang Z, Lei Q, Gao S, Huang G, Zhang E, Zeng G, Wen Z, Wu S, Liu Z. Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano. 2020;14(2):1586–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-mediated endocytosis drives robust siRNA delivery of polymeric nanoparticles to macrophages. ACS Nano. 2021;15(5):8267–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu S, Tang C, Yin C. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Biomaterials. 2015;52:229–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He C, Yin L, Song Y, Tang C, Yin C. Optimization of multifunctional chitosan–siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater. 2015;17:98–106.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He C, Yin L, Tang C, Yin C. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials. 2013;34(11):2843–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li P-P, Yan Y, Zhang H-T, Cui S-H, Wang C-H, Wei W, Qian H-G, Wang J-C, Zhang Q. Biological activities of siRNA-loaded lanthanum phosphate nanoparticles on colorectal cancer. J Control Release. 2020;328:45–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janardhanam LSL, Bandi SP, Venuganti VVK. Functionalized LbL film for localized delivery of STAT3 siRNA and oxaliplatin combination to treat colon cancer. ACS Appl Mater Inter. 2022;14(8):10030–46.

    Article 
    CAS 

    Google Scholar
     

  • He C, Yue H, Xu L, Liu Y, Song Y, Tang C, Yin C. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater. 2020;103:213–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esmaily M, Masjedi A, Hallaj S, Nabi M, Malakotikhah AF, Ghani S, Ahmadi A, Sojoodi M, Hassannia H, Atyabi F, Namdar A, Azizi G, Ghalamfarsa G, Jadidi-Niaragh F. Blockade of CTLA-4 increases anti-tumor response inducing potential of dendritic cell vaccine. J Control Release. 2020;326(63):74.


    Google Scholar
     

  • Wang DW, Li SJ, Tan XY, Wang JH, Hu Y, Tan Z, Liang J, Hu JB, Li YG, Zhao YF. Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury. Carbohydr Polym. 2021;256: 117556.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song Y, Tang C, Yin C. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials. 2018;185:117–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu S, Williams GR, Wu J, Wu J, Zhang X, Chen X, Li S, Jiao J, Zhu L-M. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J Nanobiotech. 2019;17(1):1–18.

    Article 
    CAS 

    Google Scholar
     

  • Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, Yu H, Wang J, Sun M, You Y, Zhu M, Chen M, Zhu L, Shen Q, Ying X, Lou X, Jiang S, Du Y. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci Adv. 2020;6(41):7422.

    Article 

    Google Scholar
     

  • Guardieiro B, Santos-Paul MA, Furtado RHM, Dalçóquio T, Salsoso R, Neves ILI, Neves RS, Cavalheiro Filho C, Baracioli LM, Nicolau JC. Comparison between two different local hemostatic methods for dental extractions in patients on dual antiplatelet therapy: a within-person, single-blind, randomized study. J Evid-Based Dent Pr. 2023;23(3):101863.

    Article 

    Google Scholar
     

  • Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: past, present and future. J Polym Sci. 2023;61(14):1389–414.

    Article 
    CAS 

    Google Scholar
     

  • Devlin JJ, Kircher S, Kozen BG, Littlejohn LF, Johnson AS. Comparison of ChitoFlex®, CELOX™, and QuikClot® in control of hemorrhage. J Emerg Med. 2011;41(3):237–45.

    PubMed 

    Google Scholar
     

  • Littlejohn LF, Devlin JJ, Kircher SS, Lueken R, Melia MR, Johnson AS. Comparison of celox-a, chitoflex, woundstat, and combat gauze hemostatic agents versus standard gauze dressing in control of hemorrhage in a swine model of penetrating trauma. Acad Emerg Med. 2011;18(4):340–50.

    Article 
    PubMed 

    Google Scholar
     

  • Fischer TH, Connolly R, Thatte HS, Schwaitzberg SS. Comparison of structural and hemostatic properties of the poly-N-acetyl glucosamine Syvek Patch with products containing chitosan. Microsc Res Techniq. 2004;63(3):168–74.

    Article 
    CAS 

    Google Scholar
     

  • Crofton A, Chrisler J, Hudson S, Inceoglu S, Petersen F, Kirsch W. Effect of plasma sterilization on the hemostatic efficacy of a chitosan hemostatic agent in a rat model. Adv Ther. 2016;33(2):268–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amoozgar H, Abtahi S, Edraki MR, Mohammadi H, Ajami GH, Mehdizadegan N, Keshavarz K, Moradi P, Shabanpuor-Haghighi S, Zafari T. Effect of Celox® powder on initial hemostasis after cardiac catheterization in pediatric patients with congenital heart disease: a prospective study, Iran. J Pediatr. 2020:30(4).

  • Arnaud F, Teranishi K, Okada T, Parreño-Sacdalan D, Hupalo D, McNamee G, Carr W, Burris D, McCarron R. Comparison of combat gauze and traumastat in two severe groin injury models. J Surg Res. 2011;169(1):92–8.

    Article 
    PubMed 

    Google Scholar
     

  • Weng M-H. The effect of protective treatment in reducing pressure ulcers for non-invasive ventilation patients. Intensive Crit Care Nurs. 2008;24(5):295–9.

    Article 
    PubMed 

    Google Scholar
     

  • Phongying S, Aiba SI, Chirachanchai S. A novel soft and cotton-like chitosan-sugar nanoscaffold. Biopolymers. 2006;83(3):280–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beele H, Meuleneire F, Nahuys M, Percival SL. A prospective randomised open label study to evaluate the potential of a new silver alginate/carboxymethylcellulose antimicrobial wound dressing to promote wound healing. Int Wound J. 2010;7(4):262–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roviello G, Lee SB, Gwark S-C, Kang CM, Sohn G, Kim J, Chung IY, Lee JW, Kim HJ, Ko BS, Ahn S-H, Kim W, Do J, Jeon JY, Kim J, Um E, Yoon TI, Jung S-U, Han M, Son BH. The effects of poloxamer and sodium alginate mixture (Guardix-SG®) on range of motion after axillary lymph node dissection: a single-center, prospective, randomized, double-blind pilot study. Plos One. 2020;15(9).

  • Slomka B, Rongies W, Ruszczuk P, Sierdzinski J, Saganowska D, Zdunski S, Worwag ME. Short-term effect of kinesiology taping on temperature distribution at the site of application. Res. Sports Med. 2018;26(3):365–80.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang X, Wang Y, Gao Z, Mao X, Cheng J, Huang L, Tang J. Advances in wound dressing based on electrospinning nanofibers. J Appl Polym Sci. 2023; p. e54746.

  • Babavalian H, latifi AM, Shokrgozar MA, Bonakdar S, Shakeri F, Tebyanian H. Healing effects of synthetic and commercial alginate hydrogel dressings on wounds: a comparative study. Trauma Monthly. 2016 (In Press).

  • Drzymalski DM, Ward K, Hernandez JM, Hoot J, Au S-C, Yang F-SC, Azocar RJ. The effect of Tegaderm™ versus EyeGard® on eyelid erythema during general anesthesia: a randomized-controlled trial. Can. J Anesth. 2020;67(5):560–7.

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Comment

    Your email address will not be published. Required fields are marked *

    Scroll to Top